1.3 Reflecting Graphs of Functions

Invariant points: Points on a graph which do not move after a transformation Using a graphing calculator, graph $y=f(x)$ and $y=-f(x)$ $f(x)=(1 / 4) x+3$ $-f(x)=(-1 / 4) x-3$

Which axis is $\mathrm{f}(\mathrm{x})$ reflected in?
Let's look at a table of values for this graph

Notice that every y value in $f(x)$ is replaced with -y in $-\mathrm{f}(\mathrm{x})$
Reflections in the x -axis:

1. Each y-value of $f(x)$ is multiplied by -1
2. The point (x, y) in $f(x)$ becomes ($x,-y$) for $-f(x)$
3. All x - intercepts stay the same. They are invariant points
4. To find the equation for $-\mathrm{f}(\mathrm{x})$ multiply $\mathrm{f}(\mathrm{x})$ by -1

Using a graphing calculator, graph $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\mathrm{f}(-\mathrm{x})$

$$
\begin{aligned}
& f(x)=(1 / 4) x+3 \\
& \mathbf{f}(\mathbf{x})=(\mathbf{1} / 4)(-\mathrm{x})+\mathbf{3}
\end{aligned}
$$

Which axis is $\mathrm{f}(\mathrm{x})$ reflected in?
Let's look at a table of values for this graph

Notice that 3 and -3 have the same y - value. So, the y-values remain the same and the x values are multiplied by -1 .

Reflections in y- axis

1. The point (x, y) in $f(x)$ becomes $(-x, y)$ for $f(-x)$
2. The y - intercepts remain the same. They are invariant points.
3. To find the equation for $\mathrm{f}(-\mathrm{x})$ substitute -x into $\mathrm{f}(\mathrm{x})$ for x .

Using a graphing calculator, graph $y=f(x)$ and $x=f(y)$.Note: To graph $x=f(y)$ you will have to solve for y .

This is called the graph of the inverse. In such a situation, the coordinates of x and y in $y=f(x)$ are interchanged to get the function $x=f(y)$. This results in $n_{-1} a$ reflection in the line $y=x$. The graph of the inverse is often written as $y=f^{-1}(x)$ instead of $x=f(y)$.

Refection in the line $y=x$

1. The point (x, y) in $f(x)$ becomes (y, x) for $f(y)$
2. To find the equation of the inverse, interchange x and y and solve for y .

Each graph is the reflection of the other in the x-axis. Write the equation of the graph illustrated by the wide, dark curve if the equation of normalcurve is

For the following function $f(x)$ graph

$$
y=-f(x)
$$

$$
y=f(-x)
$$

$$
x=f(y)
$$

$$
\begin{aligned}
& \text { For each of the following state the equation for } x=f(y) \\
& y=\frac{1}{8} x^{3}-1 \\
& x=\frac{1}{8} y^{3}-1 \\
& x+1=\frac{1}{8} y^{3} \\
& 8(x+1)=y^{3} \\
& \sqrt[3]{8(x+1)}=y \\
& \begin{array}{l}
f(x)=\sqrt{3-x} \quad x^{2}-3=-1 y \\
y=\sqrt{3-x} \quad-x^{2}+3=y
\end{array} \\
& \begin{array}{l}
x=\sqrt{3-y} \\
x^{2}=3
\end{array} \\
& \begin{array}{c}
-x^{2}+3=y \\
\text { or }
\end{array} \\
& x^{2}=3-y \\
& 3-x^{2}=y \\
& y=\frac{1}{x^{2}-1} \\
& \begin{array}{l}
\frac{x}{1}=\frac{1}{y^{2}-1} \\
1=x\left(y^{2}-1\right.
\end{array} \quad\left[\begin{array}{l}
\frac{1}{x}+1=y^{2} \\
\pm \sqrt{\frac{1}{x}+1}=y
\end{array}\right. \\
& \frac{1}{x}=y^{2}-1 \\
& \text { Pg. } 31 \\
& \text { 2, } 4,5 \mathrm{~S},
\end{aligned}
$$

