1.3 Reflecting Graphs of Functions

Invariant points: Points on a graph which do not move after a transformation

Using a graphing calculator, graph y = f(x) and y = -f(x)

$$f(x) = (1/4)x + 3$$

$$-f(x) = (-1/4)x - 3$$

Reflection across the x-045

Which axis is f(x) reflected in?

Let's look at a table of values for this graph

X	[Υ1	Y2
-3	2.25	-2.25 -2.5
-2 -1 0 1 2	2.75	-2.75
i	3.25	-3.25
2 3	25.5 25.7 25.7 25.7 25.7 25.7 25.7 25.7	25 25,75 26,75 26,75 26,75 26,75 26,75
X= -3		

Notice that every y value in f(x) is replaced with -y in -f(x)

Reflections in the x-axis:

- 1. Each y -value of f(x) is multiplied by -1
- 2. The point (x, y) in f(x) becomes (x, -y) for -f(x)
- 3. All x intercepts stay the same. They are invariant points
- 4. To find the equation for -f(x) multiply f(x) by -1

$$\frac{f(x)}{(2,3)} - f(x)$$

$$\frac{-f(x)}{(4,-6)} - \frac{1}{(4,6)}$$

$$\frac{(-3,7)}{(-3,7)} - \frac{1}{(4,6)}$$

Using a graphing calculator, graph y = f(x) and y = f(-x)

$$f(x) = (1/4)x + 3$$

$$f(x) = (1/4)(-x) + 3$$

Which axis is f(x) reflected in?

Let's look at a table of values for this graph

X	Y1	Y2
-3 -2 -4	25.5 25.7 25.7 25.7 25.7 25.7 25.7 25.7	3,5,5 7,5,5 7,5,0 7,5,0 7,5,0 7,5,0
-2 -1 0 1 2	3.25	2.75
3	3.75	2.25
$\overline{X=-3}$		

Notice that 3 and -3 have the same y - value. So, the y-values remain the same and the x values are multiplied by -1.

Reflections in y - axis

- 1. The point (x, y) in f(x) becomes (-x, y) for f(-x)
- 2. The y intercepts remain the same. They are invariant points.
- 3. To find the equation for f(-x) substitute -x into f(x) for x.

$$\frac{f(x)}{(-7,6)} - \frac{f(-x)}{(-3,-4)} - \frac{f(-x)}{(-3,-4)}$$

This is called the **graph of the inverse.** In such a situation, the coordinates of x and y in y = f(x) are interchanged to get the function x = f(y). This results in a reflection in the line y = x. The graph of the inverse is often written as y = f(x) instead of x = f(y).

Relfection in the line y = x

- 1. The point (x, y) in f(x) becomes (y, x) for f(y)
- 2. To find the equation of the inverse, interchange x and y and solve for y.

$$\frac{f(x)}{(4,5)} \rightarrow \frac{x=f(y)}{(5,4)}$$

Each graph is the reflection of the other in the x-axis. Write the equation of the graph illustrated by the wide, dark curve if the equation of normal curve is

$$y = \sqrt{9 - (x - 3)^2}$$

For the following function f(x) graph

$$y = -f(x)$$

$$x = f(y)$$

For each of the following state the equation for
$$x = f(y)$$

$$y = \frac{1}{8}x^{3} - 1$$

$$x = \frac{1}{8}y^{3} - \frac{1}{8}x + \frac{1}{8}y^{3}$$

$$8(x+1) = y^{3}$$

$$3(x+1) = y$$

$$y = \frac{1}{x^{2} - 1}$$

$$x = \frac{1}{x^{2} - 1}$$

$$y = \frac{1}{x^{2} - 1}$$

$$x = y^{2} - \frac{1}{x^{2} - 1}$$