1.4 Stretching Graphs of Functions

Graph $y = x^2$ and $y = 2x^2$ on the same axis and look at the table of values of these two functions

X	Υı	Yz
8422566	0149100	0 2 8 18 3 5 0 7 2
ő .	36	7ž
X=0		

Notice how each of the y coordinates for y2 is double those of y1. The point (x, y) has become the point (x, 2y). We say that the graph of $y = x^2$ is **expanded vertically** by a factor of 2.

Graph $y = x^2$ and $y = \frac{1}{2}x^2$ on the same axis and look at the table of values of these two functions.

X	Υı	Yz
SHAMFING	0119122	0 5 4.5 8 12.5 18
X=0		

Notice how each of the y coordinates of y2 is one-half those of y1. The point (x, y) has become (x, 0.5y). We say that the graph of $y = x^2$ is **compressed** vertically by a factor of one-half.

What would happen to the graph of the function if instead of using positive values in front of the function we used negative values?

For example $y = -2x^2$.

Vertical Stretching:

- 1. In general, for any function y = f(x) the graph of the function y = af(x)is obtained by multiplying the y – value of every point in y = f(x) by "a".
- 2. For (x, y) in f(x) the points become (x, ay) for af(x)
- 3. If a>1 the graph of y = f(x) is expanded vertically by a factor of "a"
- 4. If 0 < a < 1 the graph of y = f(x) is compressed vertically by a factor of "a".
- 5. If a < 0 the graph is reflected in the x axis.
- 6. All x intercepts remain the same. They are invariant points.

Describe how each of the following functions relates to y = f(x) and then draw the graph of the compression of expansion on the grid.

$$y = 4 f(x)$$

expanded vertically by a factor of 4.

$$y = (-1/3) f(x)$$

- perfected in x-aps - compressed vertically that I

Graph y = |x| and y = |2x| on the same axis and look at a table of values. Also notice the different position of our coefficient.

Notice how of y = |2x| is compressed horizontally. This is because every point (x, y) on y = |x| is transformed to (x/2, y) on y = |2x|. This is a horizontal compression by a factor of 1/2.

Graph y = |x| and y = |1/2 x| on the same axis and look at a table of values.

Notice how the graph of y = |1/2 x| is expanded horizontally. This is because every point (x, y) on y = |x| is transformed to (2x, y) on y = |1/2 x|. This is a horizontal expansion by a factor of 2.

What would happen to the graph of the function if you used negative values next to x instead of positive values?

For example: $y = (-3x)^3$ Feflection in $y - \alpha y$ is $3 + \frac{1}{3}$

factor of \frac{1}{3}.

Horizontal Stretching:

- 1. The point (x, y) on the graph of the function y = f(x) becomes the point (x/k, y) on the graph of the function y = f(kx).
- 2. If k>1 the graph of y = f(x) is compressed horizontally by a factor of 1/k.
- 3. If $0 \le k \le 1$ the graph of y = f(x) is expanded horizontally by a factor of 1/k.
- 4. If k<0 then the graph is reflected in the y axis.
- 5. The y intercepts remain the same. They are invariant points.

Describe how each of the following functions relates to y = f(x) and then draw the graph of the compression of expansion on the grid.

