1.4 Stretching Graphs of Functions

Graph $y=x^{2}$ and $y=2 x^{2}$ on the same axis and look at the table of values of these two functions

X	Y_{1}	$Y z$		
0	0	0		
1	1	2		
2	4	1		
3	9	18		
4	16	32		
5	25	50		
6	36	72		
$X=0$				

Notice how each of the y coordinates for y 2 is double those of y 1 . The point (x, y) has become the point $(x, 2 y)$. We say that the graph of $y=x^{2}$ is expanded vertically by a factor of 2 .

Graph $y=x^{2}$ and $y=\frac{1}{2} x^{2}$ on the same axis and look at the table of values of these two functions.

Notice how each of the y coordinates of $y 2$ is one-half those of $y 1$. The point (x, y) has become $(x, 0.5 y)$. We say that the graph of $y=x^{2}$ is compressed vertically by a factor of one-half.

What would happen to the graph of the function if instead of using positive values in front of the function we used negative values?
For example $y=-2 x^{2}$.
-

Describe how each of the following functions relates to $y=f(x)$ and then draw the graph of the compression of expansion on the grid.

$$
y=4 f(x)
$$

- expanded vertically by a factor of 4 .

$$
y=(-1 / 3) f(x)
$$

- refbectedinx-aris
- compressed vertically byafactor of $\frac{1}{3}$.

Graph $y=|x|$ and $y=|2 x|$ on the same axis and look at a table of values. Also notice the different position of our coefficient.

Notice how of $y=|2 x|$ is compressed horizontally. This is because every point (x, y) on $\mathrm{y}=|\mathrm{x}|$ is transformed to $(\mathrm{x} / 2, \mathrm{y})$ on $\mathrm{y}=|2 \mathrm{x}|$. This is a horizontal compression by a factor of $1 / 2$.

Graph $y=|x|$ and $y=|1 / 2 x|$ on the same axis and look at a table of values.

Notice how the graph of $y=|1 / 2 x|$ is expanded horizontally. This is because every point (x, y) on $y=|x|$ is transformed to $(2 x, y)$ on $y=|1 / 2 x|$. This is a horizontal expansion by a factor of 2 .

What would happen to the graph of the function if you used negative values next to x instead of positive values?

For example: $y=(-3 x)^{3}$

factor of $\frac{1}{3}$.

Horizontal Stretching:

1. The point (x, y) on the graph of the function $y=f(x)$ becomes the point $(\mathrm{x} / \mathrm{k}, \mathrm{y})$ on the graph of the function $\mathrm{y}=\mathrm{f}(\mathrm{kx})$.
2. If $k>1$ the graph of $y=f(x)$ is compressed horizontally by a factor of $1 / k$.
3. If $0<k<1$ the graph of $y=f(x)$ is expanded horizontally by a factor of $1 / k$.
4. If $k<0$ then the graph is reflected in the $y-$ axis.
5. The y - intercepts remain the same. They are invariant points.

Describe how each of the following functions relates to $y=f(x)$ and then draw the graph of the compression of expansion on the grid.

$$
y=f(-1 / 2 x)
$$

- reflected in y-axis - horizontally expanded
by a factor of 2 .

$$
y=f(3 x)
$$

\qquad

$$
P g .41
$$

$2,3,5,8,10$

