Combinations of Transformations

Given each of the following functions, explain how the first function relates to the second function.

$$
y=x^{2}
$$

$$
y=\left(\frac{1}{2}(x-4)\right)^{2}
$$

* Al ways work from left to right

When describing our transformations.

- houzantal expansion by a factor of 2.
- translation of 4 units sight.

$$
y=\frac{1}{x} \quad y=\frac{1}{2(x+3)}=\frac{1}{2} \cdot \frac{1}{(x+3)}
$$

- Vertically compression by a factor of
- translates 3 cuts left.

$$
y=\sqrt{x}
$$

$$
y=-\sqrt{2 x-6}
$$

The coefficient on " x " $\frac{\text { MUST be I before }}{\text { you describe any }}$ you describe any transformations.

$$
y=\sqrt{2(x-3)}
$$

= reflection in the x-axis

- horizontally compresses by a factor of $\frac{1}{2}$.
- translation of 3 untsight.

$$
\begin{array}{lr}
y=|x| & y=\left\lvert\, \frac{-2}{3} x+6\right. \\
y=|-2 / 3(x-9)| \\
\text { - reflected in } y \text {-axis }
\end{array}
$$

- horizontal expansion by a factor of $\frac{3}{2}$
- translated right 9 units.

When we combine translations, reflections and stretches, we need to perform the transformations in the following order:
a) Sketch the NORMAL graph.
b) Apply any vertical, then horizontal expansions or compressions.
c) Perform any reflections
d) Perform any translations.

For each grid you are given a function. Sketch the graph of the new function using the given equation.

$$
y=-2 f(x-3)+1
$$

- vertical expansion by a factor of 2 .
reflector in the x-axis
- translate right 3 and up / unit.

$$
f(x)=\left(\frac{1}{3}(x-1)\right)-2
$$

 by a factor of 3 - translate I unit aught and 2 units down.

