1.6 Graphing Reciprocal and Absolute Value Functions

Graph $y=x^{2}-4$ and $y=\left|x^{2}-4\right|$ on the same axis

You should notice the following:
When you graph absolute value functions the following are true:
a) For $y=f(x)$ if $f(x)>0$ the graph remains the same.
b) For $y=f(x)$ if $f(x)<0$ the graph is reflected in the $x-$ axis.

Sketch the absolute value of each of the following graphs

Reciprocal Transformations

The reciprocal of $\mathrm{f}(\mathrm{x})$ is $\frac{1}{f(x)}$ Consider the function $\mathrm{f}(\mathrm{x})=\mathrm{x}+3$ its reciprocal $\left(\frac{1}{x+3}\right.$
$\mathrm{f}(\mathrm{x})=\mathrm{x}+3$

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$y=\frac{1}{f(x)}$
-6	-3	$-1 / 3$
-5	-2	$-1 / 2$
-4	-1	-1
-3	0	Undefined
-2	1	1
-1	2	$1 / 2$
0	3	$1 / 3$
1	4	$1 / 4$
2	5	$1 / 5$
3	6	$1 / 6$

 you take
their

How is the graph of the reciprocal function created from $y=f(x)$?

The y-intercept of $f(x)$ is \qquad . The y-intercept of $1 / f(x)$ is \qquad .

The x-intercept of $f(x)$ is -3 . The equation of the vertical asymptote of $1 / \mathrm{f}(\mathrm{x})$ is \qquad $x=-3$

Using the table of values, the invariant points are :

Sketching graphs of $y=1 / f(x)$

$$
(-2,1)
$$

1. Create a table of values for the original function
2. Create a table of values for $1 / f(x)$ using the following rule. The point (x, y) in $f(x)$ becomes ($x, 1 / y$) in $1 / f(x)$
3. Sketch the graph of $y=1 / f(x)$

Using the graph of $y=f(x)$ complete the table of values and then sketch the graph of the $1 / f(x)$

x	$\mathrm{y}=\mathrm{f}(\mathrm{x})$	$\mathrm{y}=$ $1 / \mathrm{f}(\mathrm{x})$
-4	-	-
-3	5	$1 / 5$
-2	0	undefined
-1	-3	$-1 / 3$
0	-4	$-1 / 4$
1	-3	$-1 / 3$
2	0	undeffad
3	5	$1 / 5$
4	-	-

$$
\text { Pg. } 57
$$

$$
(-3,6,10
$$

