2.10 Logarithmic Functions

Let's compare the graphs of the following 2 equations

Analyze the following for each graph

	$\mathbf{y}=\mathbf{2}^{\mathbf{x}}$	$\mathbf{y}=\log _{2} \mathbf{x}$
Domain	$x \in R$	$X>0$
Range	$y>0$	$y \in R$
\mathbf{x}-intercepts	None	1
y-intercepts	1	None

$y=\log _{2} x$ has a graph which is the inverse of $y=2^{x}$

Example 2:
The speed of the wind, S , in km / h near the centre of a tornado is related to the distance that the tornado has travelled, d in kilometres. This relationship can be modeled by the equation $S=\mathbf{3 7} \log d+96$.
a) Using your graphing calculator graph the equation

$$
x:[0,12,2] \text { Y }:[120,140,5]
$$

b) Estimate the speed of the tornado that has travelled 10 km .

$$
133 \mathrm{~km} / \mathrm{h}
$$

Algebraically determine the distance travelled by a tornado if the speed of the wind at the centre is $140 \mathrm{~km} / \mathrm{h}$.

$$
\begin{aligned}
& 140=37 \log d+96 \\
& 44=37 \log d \\
& \frac{44}{37}=\log 01 \\
& 10^{\left(\frac{44}{37}\right)}=d \\
& d=15.46 \mathrm{~km}
\end{aligned}
$$

Example 3:
The exponential function $P=194(1.008)^{n}$ models the growth of Saskatoon's population since 1996.
a) Solve the equation for " n "to express " n " as a function of P .

b) Use you graphing calculator to graph the function from part "a".

$$
\begin{aligned}
& x:[0,6,1] \\
& y_{:[-60,-40,50]} \\
& P g .138,5,7-13
\end{aligned}
$$

