2.11 Exponential Equations

Solve the following exponential equations than CAN be written as the same base.

$$
\begin{gathered}
9^{2 x-4}=27^{x-1} \\
\left(3^{2}\right)^{2 x-4}=\left(3^{3}\right)^{x-1} \\
4 x-8=3 x-3 \\
x-8=-3 \\
x=5
\end{gathered}
$$

Solve the following exponential equations using logarithms

$$
\begin{aligned}
& 3^{x+1}=7^{2 x} \\
& (x+1) \cdot \log 3=2 x \log 7 \\
& x \log 3+\log 3=2 x \log 7 \\
& \log 3=2 \times \log 7-x \log 3 \\
& \log 3=x \cdot(2 \log 7-\log 3) \\
& \frac{\log 3}{(2 \log 7-\log 3)}=x
\end{aligned}
$$

$$
x=0.39
$$

$$
\begin{aligned}
& 3(2)^{x-1}=6^{2 x} \\
& \log 3+(x-1)(\log 2)=2 x \log 6 \\
& \log 3+x \log 2-\log 2=2 x \log 6 \\
& \log 3-\log 2=2 x \log 6-x \log 2 \\
& \log 3-\log 2=x(2 \log 6-\log 2) \\
& (\log 3-\log 2)=x \\
& (2 \log 6-\log 2)=x
\end{aligned}
$$

$$
x=0.14
$$

$$
\begin{gathered}
4(5)^{2 x}=3^{x-1} \quad x=-1.17 \\
\text { Pg. } \left.\begin{array}{c}
149 \\
1 \\
5-8
\end{array}\right\} \text { odds. }
\end{gathered}
$$

