2.12 Logarithmic Equations and Identities

$$
\begin{aligned}
& x+\log 0.0826=\log 8.76 \\
& x=\log 8.76 \log _{\log 0.0826} \\
& x=2.03 \\
& 2 \log x=\log 16
\end{aligned}
$$

$$
\begin{aligned}
& \log (2 x)+\log (x+5)=2 \\
& \log _{10}(2 x)(x+5)=2
\end{aligned}
$$

Convert this to exponential form.

$$
\begin{aligned}
& 2 x(x+5)=10^{2} \\
& 2 x^{2}+10 x=100 \\
& 2 x^{2}+10 x-100=0+5 \\
& 2\left(x^{2}+5 x-50\right)=0 \quad \frac{10}{1}-\frac{5}{1} \\
& \begin{array}{ll}
2\left(x^{2}+5 x-50\right)=0 & \left(\begin{array}{c}
1 \\
(x+10)(x-5) \\
x+10=0 \\
x
\end{array}\right. \\
\frac{1}{2} \log _{6} 9=0 \\
\log _{6} x-\log _{6} 27^{\frac{1}{3}} &
\end{array} \\
& \begin{array}{l}
\log _{6} 9^{\frac{1}{2}}=\log _{6}\left(\frac{x}{27^{1 / 3}}\right) \\
\log _{6} 3=\log _{6}(x)
\end{array} \\
& \begin{aligned}
\log _{6} 3 & =\log _{6}\left(\frac{x}{3}\right) \\
3 & =x
\end{aligned} \\
& 3=\frac{x}{3} \\
& x=.9
\end{aligned}
$$

$$
\begin{aligned}
& \log _{3}(x-2)+\log _{3}(x-3)=2 \\
& \log _{3}(x-2)(x-3)=2 \quad a x^{2}+b x+c \\
& (x-2)(x-3)=3^{2} \rightarrow x=\frac{5 \pm \sqrt{(5) \cdot 4(x) \cdot 3}}{2(1)} \\
& \begin{array}{l}
x^{2}-3 x-2 x+6=9 \\
x^{2}-5 x-3=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, x=\frac{\frac{5 \pm \sqrt{25+12}}{2}}{x=\frac{5 \pm \sqrt{37}}{2}} 2 x=\frac{5-\sqrt{37}}{2} \\
x
\end{array}, \begin{array}{l}
x=1
\end{array} \\
& \log _{8}(2-x)+\log _{8}(4-x)=1 \text {. } \\
& \log _{8}(2-x)(4-x)=1 \\
& (2-x)(4-x)=8^{\prime} \\
& 8-4 x-2 x+x^{2}=8 \\
& x^{2}-6 x=0 \\
& x(x-6)=0 \\
& x=0 \quad \begin{array}{l}
x-6=0 \\
x=6
\end{array}
\end{aligned}
$$

Consider the following identity $\log 25+x=\log 2\left(5 a^{x}\right)$
a) Verify the identity numerically when $\mathrm{a}=10$ and when $\mathrm{x}=2$

$$
\begin{gathered}
\text { fy the identity numerically when } a=10 \text { and when } x=2 \\
\log _{10} 5+2=\log _{10}\left(5 \cdot 10^{2}\right) \\
2.69897=2.69897
\end{gathered}
$$

b) Verify the identity graphically when $\mathrm{a}=10$.

$$
\begin{aligned}
& y_{1}=\log _{10} 5+x \\
& y_{2}=\log _{10}\left(5 \cdot 10^{x}\right)
\end{aligned}
$$

c) Prove the identity for any positive base "a" and any value " x ".

$$
\begin{aligned}
\log _{a} 5+x & =\log _{a}\left(5 \cdot a^{x}\right) \\
& =\log _{a} 5+x \log _{a} a \\
& =\log _{a} 5+x
\end{aligned}
$$

Pg. 152 2-8 odds

