2.2 Defining a Logarithm

Complete Investigate Pg.74

Log Key: The log key converts any value into a base of 10 raised to some exponent.

For example: $\log 400 = 2.602059991$

$$\log 0.35 = -0.455932$$

$$400 = 10^{2.60206}$$

$$0.35 = 10^{-0.455932}$$

log(-10) = ERROR Why?????

We cennot

take the log of any

my hegative #

Logarithms do not have to be restricted to just base 10. They can be any positive number base. For example, $\log_2 16$. Let's look at evaluating logarithms of other bases.

$$\log_2 8 = 3$$

$$\log_7 2401 = 4$$

This means
$$2^3 = 8$$
 This means $7^4 = 2401$

Jogaruhmic

Let's generalize this. We can write any logarithmic function as an exponential function and vica versa. We use the following rule:

$$\log_a x = y \qquad a^y = x$$

Write each of the following in exponential form

$$\log_3 81 = 4$$

$$3^4 = 8$$

$$\log_2 0.25 = -2$$

$$3 = 0.52$$

$$\log_a b = c$$

$$a^{c} = b$$

Write each of the following in logarithmic form

$$5^3 = 125$$

$$2^{-3} = \frac{1}{8}$$

$$\log_2 \frac{1}{8} = -3$$

$$x^y = z$$

Evaluate each logarithm & Fund the # answer.
$\log_4 64 = \times$ $\log_3 243 = \times$
*Your calculator
only evaluates
* touse 10 1095.
I I you carnot evaluate
a log convert it to exponential
$2^{x}=243$
4=14
(X=5)
(X=3)
Pg. 78 4, 6-8
'3'