2.2 Defining a Logarithm

Complete Investigate Pg. 74

Log Key: The log key converts any value into a base of 10 raised to some exponent.

For example: $\log 400=2.602059991$
$\log 0.35=-0.455932$

$$
400=10^{2.60206}
$$

$$
0.35=10^{-0.455932}
$$

$\log (-10)=$ ERROR Why?????
We cannot
take the \log s

fang negative \#.

Logarithms do not have to be restricted to just base 10. They can be any positive number base. For example, $\log _{2} 16$. Let's look at evaluating logarithms of other bases.
logarithmic
$\log _{2} 8=3$ form $\log _{7} 2401=4$
This means $2^{3}=8$ This means $7^{4}=2401$ exponential form
Let's generalize this. We can write any logarithmic function as an exponential function and vica versa. We use the following rule:

$$
\log _{a} x=y \quad a^{y}=x
$$

Write each of the following in exponential form

$$
\log _{3} 81=4
$$

$$
3^{4}=81
$$

$\log _{2} 0.25=-2$

$$
2^{-2}=0.25
$$

$\log _{a} b=c \quad a^{c}=b$

Write each of the following in logarithmic form

$$
5^{3}=125 \quad \log _{5} 125=3
$$

$$
2^{-3}=\frac{1}{8}
$$

$$
\log _{2} \frac{1}{8}=-3
$$

$$
x^{y}=z
$$

$$
\log _{x} z=y
$$

Evaluate each logarithm \longrightarrow Find the \# answer.
$\log _{4} 64=x$

$$
\log _{3} 243=x
$$

* Your calculator
only evaluates
base 10 logs.
* If you cannot evaluate
a log convert it to exponential form.

$$
\begin{aligned}
& 4^{x}=64 \\
& x=3
\end{aligned}
$$

$$
\begin{aligned}
& 3^{x}=243 \\
& x=5
\end{aligned}
$$

P9.78 4, 6-8

