2.3 Laws of Logarithms

Laws of Exponents:

Multiplication: $a^x * a^y = a^{x+y}$

Division: $a^x \div a^y = a^{x-y}$

Power: $(a^m)^n = a^{mn}$

Power of Product: $(ab)^n = a^n b^n$

Power of a Quotient: $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Laws of Logarithms:

Multiplication: $\log_a xy = \log_a x + \log_a y$

Division: $\log_a \frac{x}{y} = \log_a x - \log_a y$

Powers: $\log_a x^n = n \log_a x$

Root: $\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x$

***Note: The bases of the logarithms MUST be the same just like in laws of exponents.

Simplify each of the following and write as a single log.

a)
$$\log 8 + \log 125$$

b)
$$\log_2 5 - \log_2 20$$

Write log 6 as a sum and difference of logs

$$\log 6 = \log 2 + \log 3$$

$$\left| \frac{\log 6}{2} \right| = \left| \frac{\log 12}{2} - \log 2 \right|$$

Solve the equation $2^x = \overline{10}$ * Remove the "x" from the expon

$$|092^{\times} = |0910|$$
 $X \cdot |092^{\times} = |0910|$
 $X = |0910|$
 $X = |0910| = |3.32|$

Solve the equation 250 = 132 101ⁿ

$$\frac{250}{132} = 1.01^{n}$$

$$\log \frac{250}{132} = \log 1.01^{n}$$

$$\log 250 - \log 132 = m \cdot \log 1.01$$

$$\log 250 - \log 132 = m$$

$$\log 1.01$$

Determine the value of log₄20

109420=X * Hyon cannot evaluate a log convert it to exponential form.

$$4^{x} = 20$$
 $x \log 4 = \log 20$
 $\sqrt{109} 4^{x} = \log 20$ $x = \log 20$
 $\sqrt{109} 4^{x} = \log 20$ $x = \log 20$

Express 9 as a power of 2:

$$9 = 2^{x}$$
 $\log 9 = x \log 2$
 $\log 9 = x \log 2$

Write $log(100ab^2)$ in terms of "a" and "b"

Break this log into parts that have a value of a or b. $log(100ab^2)$ in terms of "a" and "b"

Break this log into parts that have a value of a or b. $log(100ab^2)$ in terms of "a" and "b"

Break this log into parts that have a value of a or b. $log(100ab^2)$ in terms of "a" and "b"

Break this log into parts that have a value of a or b.

Write as a single log

a) $\log a + \log b - \log c$

log(ab)-logc log(ab) b) $2\log a - 1/3\log b + \log c$

109a2 - 1093b +19 109(a2) + 109C 109 a2C

Pg. 84 6,7 odds 9-11 odds 17,18