2.3 Laws of Logarithms

Laws of Exponents:
Multiplication: $\mathrm{a}^{\mathrm{x}} * \mathrm{a}^{\mathrm{y}}=\mathrm{a}^{\mathrm{x}+\mathrm{y}}$
Division: $a^{x} \div a^{y}=a^{x-y}$
Power: $\left(a^{m}\right)^{n}=a^{m n}$
Power of Product: $(a b)^{n}=a^{n} b^{n}$
Power of a Quotient: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Laws of Logarithms:

Multiplication: $\log _{a} x y=\log _{a} x+\log _{a} y$
Division: $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
Powers: $\log _{a} x^{n}=n \log _{a} x$
Root: $\log _{a} \sqrt[n]{x}=\frac{1}{n} \log _{a} x$
***Note: The bases of the logarithms MUST be the same just like in laws of exponents.

* Remove the "x" from the exponent.

$$
\begin{gathered}
\log 2^{x}=\log 10 \\
x \cdot \log 2=\log 10 \\
x=\frac{\log 10}{\log 2}=3.32
\end{gathered}
$$

Solve the equation $\quad 250=132 \times 101^{n}$

$$
\begin{aligned}
\frac{250}{132} & =1.01^{n} \\
\log \frac{250}{132} & =\log 1.01^{n} \\
\log 250-\log 132 & =n \cdot \log 1.01 \\
\frac{(\log 250-\log 132)}{\log 1.01} & =h \\
n & =64.18
\end{aligned}
$$

Determine the value of $\log _{4} 20$

$$
\log _{420}=x
$$

* Y you cannot evaluate a log convert it to exponential form.

$$
\begin{aligned}
4^{x} & =20 \quad x \log 4=\log 20 \\
\log x & =\log 20
\end{aligned} \quad x=\frac{\log 20}{\log 4} \doteq 2.16
$$

Express 9 as a power of 2 :

$$
\begin{aligned}
9 & =2^{x} \\
\log 9 & =x \log 2 \\
\frac{\log 9}{\log 2} & =x \\
x & =3.17
\end{aligned}
$$

Write $\log \left(100 \mathrm{ab}^{2}\right)$ in terms of "a" and "b"
Break this log unto ports that have a value or a or b.

$$
\begin{gathered}
\log 100+\log a+\log b^{2} \\
2+\log a+2 \log b
\end{gathered}
$$

Write as a single log
a) $\log a+\log b-\log c$
b) $2 \log a-1 / 3 \log b+\log c$
$\log (a b)-\log c$
$\log \left(\frac{a b}{c}\right)$

$$
\begin{aligned}
& \log a^{2}-\log 3 \sqrt{b}+\log \\
& \log \left(\frac{a^{2}}{\sqrt[3]{b}}+\log \frac{c}{T}\right. \\
& \log \frac{a^{2} c}{\sqrt[3]{b}}
\end{aligned}
$$

Pg. 84

$$
6,7 \text { odds }
$$

$9-11$ odds

$$
17,18
$$

