Day 1: Fundamental Counting Principle and Permutations

Fundamental Counting Prinicple: Counting without counting!!!
Eg 1) If Connor were at a restaurant with 2 appetizer choices, 3 main courses and 3 desserts, how many different meals could you order?
Tree Diagram

Definition (FCP): If there are a_{1} ways of making a first choice, a_{2} ways of making a second a_{3} ways of making a third and so on, the total number of ways of making ALL choices is $a_{1} \times a_{2} \times a_{3} \times \ldots$

Eg 2) Sue has 10 dresses, 2 blouses, 12 pairs shuand 5 rato. How many different ways can she dress?

$$
10 \times 2 \times 12 \times 5=1200
$$

Eg 3) How many even 2 digit numbers are there?

$$
\frac{9}{\hat{\uparrow}} \frac{5}{\hat{S}_{\text {ones }}}=45
$$

Eg 4) How many 2 digit whole numbers can be formed using the digits $0,1,2,4,6,7,8,9$?

$$
7 \times 8=56
$$

 a digit in any given whole number?

$$
\frac{7 \times 7}{4}=49
$$

Eg 5) At an elementary school track meet, all participants are given ribbons based on their 'place'. If all 8 runners get place ribbons, in how many different ways could the runners receive their ribbons?

$$
\begin{aligned}
& \frac{8}{4} \times \frac{7}{\hat{i}} \times \underline{6 \times 5} \times \underline{4} \times \frac{3}{2} \times \frac{2}{4}=40320 \\
& \text { place place } \\
& \text { This product can be written as } \\
& \text { calculator } \\
& \text { "8 factorial" } \\
& 8 \text { MATH PuB } 4 \text { ENTER }=40320 \\
& n!=n(n-1)(n-2) \ldots \cdot 3 \cdot 2 \cdot 1
\end{aligned}
$$

This product is called 8 ! (aka a permutation)
Permutation - An arrangement of items where order must be considered.

Eg 6) In how many different ways can you arrange the letters BAIT?

$$
\begin{aligned}
& \text { BAIT } 4 \times 3 \times 2 \times 1=24 \\
& \text { ABIT OR 4! }=24 \\
& \text { TBA } \\
& \text { etc. }
\end{aligned}
$$

* NOTE: n different things san be arranged in a row in n! Ways
Eg 7) If letters are not repeated, in how many different ways can you form a 3 letter permutation using the alphabet?

$$
26 \times 25 \times 24=15600
$$

Permutation key on calculator

$$
\underset{\text { mATT }}{26 \operatorname{PRB} P \operatorname{Pr}_{26} 3}=15600
$$

Can solve such permutation questions with a formula:

$$
\begin{aligned}
{ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad{ }_{26} P_{3} & =\frac{26!}{(26-3)!}=\frac{26!}{23!}=15600 \\
& =\frac{26 \times 25 \times 24 \times 23!}{25}
\end{aligned}
$$

Eg 8) How many different 3 letter permutations can be formed with the word keyboard?

$$
\left.\begin{array}{l|l}
\underline{8 \times 2 \times 6} \\
=336
\end{array} \right\rvert\, \quad 8 P_{3}=336
$$

Special Case: $\quad{ }_{n} P_{n}=n$!

$$
\begin{aligned}
\lg 5 P_{5} & =120 \\
5!=5 \times 4 \times 3 \times 2 \times 1 & =120
\end{aligned}
$$

Eg 9) In a certain country, license plates are formed by 3 different numbers following by 4 different letters. How many different plates are possible?

$$
\begin{aligned}
& \frac{10 \times 9 \times 8}{} \times 2 \underline{26 \times 25 \times 24 \times 23} \\
& =25833000
\end{aligned}
$$

OR $\quad{ }_{10} P_{3} \times 26 P_{4}$
Eg 10) If phone numbers are made up of 3 different digits following by 4 different digits, how many different phone numbers are possible? How many are possible if the digits don't need to be different?

$$
\begin{aligned}
& \text { a) } 10 \times \underline{9} \times \underline{8} \times \underline{10} \times \underline{9} \times \underline{8} \times \underline{7} \\
& =3628800 \\
& \text { b) } \begin{aligned}
& \frac{10 \times 10 \times 1}{}=\times 10 \times 10 \times 10 \times 10 \\
=10 & =10000200
\end{aligned}
\end{aligned}
$$

Simplify $\quad \frac{(n-2)!}{n!}=\frac{(n-2)!}{n(n-1)(n-2)!}=\frac{1}{n(n-1)}$

Solve the equation $\quad{ }_{n} P_{2}=20$

$$
\left\{\begin{array}{c}
\left.n P_{r}=\frac{n!}{(n-r)!}\right)^{\frac{n!}{(n-2)!}=20} \\
\frac{n(n-1)(n-2)!}{(n-21!}=20 \\
n(n-1)=20 \\
5 \times 4=20 \Rightarrow n=5 \\
n^{2}-n-20=0 \\
(n-5)(n+4)=0
\end{array}\right.
$$

$n=5$ OR $n=-4 \&$ extraneous
Assignment
Pg. 356 1b, 3, 5, 11ac, 13
Pg. 364 4-6, 8, 9, 12, 13, 18odds, 21 odds

November 19, 2009

