Day 4: Modeling Using Normal Distribution

When we want to find the area under the normal curve given information to find the z-scores we use a function in calculator called normalcdf(.

Eg 1) Find the area under the curve for a z-score larger than or equal to 1.2.

Sometimes you are going to be given the area under the curve and have to use this to find a z - score. We need to use a command called invNorm on our calculator to take an area and find its z-score. It is EXTREMELY important to note that InvNorm considers the ENTIRE area to the left of a PARTICULAR z-score.

Eg 2) Find the value of "a" for the following situation $0 \le z \le q = 0.4236$

**It is VERY important to draw a diagram for the situation

Eg 4) Find the z-score for the following given:

$$Z_{1} = 0.5 + 0.1232 = 0.6232$$

$$The Norm (0.6332) (0.3)$$

$$Z_{2} = 0.5 + 0.1232 + 0.1063 = 0.7295$$

$$Z_{3} = 0.61$$

@Copyright Robert Niles; http://www.robertniles.com/stats/stdev.shtml

- 0.33 = (0.67) Inv Norm (0.67)

Eg 5) A manufacturer produces some useless piece of electronics and finds that it has a mean life of 12.3 years and standard deviation of 2.9 years. If the data is normally distributed, then what guarantee should the maufacturer give so that fewer than 8% of the units will be returned?

$$\frac{1}{2} = \frac{1}{1000} = \frac{1}{1$$

Assignment: Handout