Day 4: Modeling Using Normal Distribution

When we want to find the area under the normal curve given information to find the z-scores we use a function in calculator called normalcdf(.

Eg 1) Find the area under the curve for a z-score larger than or equal to 1.2 .

Sometimes you are going to be given the area under the curve and have to use this to find a z - score. We need to use a command called invNorm on our calculator to take an area and find its z-score. It is EXTREMELY important to note that InvNorm considers the ENTIRE area to the left of a PARTICULAR z-score.

Eg 2) Find the value of "a" for the following situation $0 \leq z \leq a_{9} 9 \overline{=} 0.4236$
**It is VERY important to draw a diagram for the situation

Eg 3) Find the z-score for the following given:

0
5-0.355
(145) InvNam (0.145)
-1.06

Eg 4) Find the z -score for the following given:

$z_{1}=0.5+0.1232=0.6232$ IavNorm $(0.6232) 0.31)$
$z_{2}=0.5+0.1232+0.1063=0.7295$

$$
z_{2}=0.6
$$

Find the z -score for the following given:

$$
\begin{array}{r}
z_{1}=0.5-0.3665-0.087=0.0465 \\
I_{\text {nv }} \mathrm{Nom}(0.0465)=-1.68
\end{array}
$$

$$
z_{2}=0.5-0.087=0.413
$$

Find the z-score for the following given:

Eg 5) A manufacturer produces some useless piece of electronics and finds that it has a mean life of 12.3 years and standard deviation of 2.9 years. If the data is normally distributed, then what guarantee should the maufacturer give so that fewer than 8% of the units will be returned?

Assignment: Handout

