Day 3: The Standard Normal Distribution

What happens if the data in our problems doesn't fall exactly on a standard of deviation?

Eg 1) The heights of students are normally distributed with a mean of 150 cm and a standard deviation of 15 cm . What percentage of the students have a height greater than 160 cm ?

If you look at the curve we drew 160 does not fall on one of our standard deviation lines. What do we do?

Normalize the curve by using the z - score formula.

* Round to

$$
z=\frac{x-\mu}{\sigma} \quad z=\frac{160-150}{15}
$$

2 decimal $\mu(\mathrm{mu})$ - mean σ (sigma) - standard deviation places x - measurement or data z - z-score

So, to finish off example 1... $z=0.67$ \# of SD to the Mghtor left of our mean.
$\operatorname{Eg} 2)_{0}$ The annual mean daily temperature for Calgary is 3.5 C with a standard deviation of 6.75 . The annual mean daily temperature for Regina is 3.1 C with a standard deviation of 10.6_{0} If the temperature today was 12 C in Regina and 11 C in Calgary, which city had the better than average day with respect to temperature?

Eg 3) The results of an exam are found to be normally distributed with a standard deviation of 8.3. Michelle's score of 75 on the exam corresponds to a z-score of 1.35 . The mean of the exam is ?

Eg 4) A mark of 73 on an exam translates to a z -score of 1.6 . If the mean is 64 then the standard deviation to the nearest tenth is ?

When our data does not lie on a standard deviation line we need to be able to determine the percentage of data in the region we are working with.

Eg 5) The Bright light Company tested a new line of light bulbs and found their lifetimes to be normally distributed with a mean life of 98 hours and a standard deviation of 13 hours.
a) What percent of the light bulbs lasted between 70 hours and 120 hours. normeled $f\left(-2.15,1 . c_{9}\right)$

b) What is the probability that a light bulb selected at random will last more than 111 hours?

Assignment: Handout

