## Day 3: Combinations

Combinations: A selection of items in which the order is unimportant. **When you are SELECTING items, you are working with a combination.

3 letter combinations of PARTY:


In looking at column 1 , there are 6 different permutations of $\mathrm{P}, \mathrm{A}$ and R. When working with combinations and you SELECT the 3 letters P , A and R , the 6 perms make up 1 selection. Hence, there are 10 combinations of 3 letters selected from the word PARTY. The total perms divided by the total number of ways each 3 letter selection can be arranged is

Formula for combinations:

$$
{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{{ }_{r} P_{r}}=\frac{n!}{(n-r)!r!}
$$

Eg 1) In how many ways can 2 players be selected from a team of twelve to serve as captains?


Eg 2) To win the lotto 6-49, a person must correctly choose 6 numbers from 49. how many combinations are possible?


49
$=13,983,816$

Eg 3) Dana has a penny, a nickel, a dime, a quarter, a halfdollar and a dollar coin. How many different sums of money can she make from any 3 or 4 coins?


Eg 4) In how many ways can a committee of 4 male and 3 female students be selected from a math class that has 18 male students and 19 female students?


Eg 5) A club consists of 5 boys and 5 girls. How many committees of 4 members can be formed if:
a. No restrictions.

$$
{ }_{10} C_{4}=210
$$

b. 4 boys.

$$
{ }_{5} c_{4}=5
$$

c. 3 boys and 1 girl.

$$
5^{c} 3 \times{ }^{2 c_{1}}=50
$$

d. At least 2 boys.
$2 B$ and $2 G=100$
or

$$
\begin{aligned}
& 3 B \text { and } 1 G=50 \\
& \text { or } \\
& 4 B \text { and } O G=5
\end{aligned}
$$



$$
\begin{gathered}
\text { Assignment: } \\
\text { Pg. } 3751,2,12 \mathrm{a}, 14,15 \mathrm{ab}, 17,20, \\
24,25,28,29,31 \mathrm{ab}
\end{gathered}
$$

