Dec. 1

Day 8: Binomial Theorem and Probabilities

Suppose you roll a single die six times. What is the probability of guessing the number on the die once out of the six rolls?

$$
P(x)={ }_{n} C_{x}\left(p^{x}\right)(1-p)^{n-x}
$$

p - the probability of the outcome successfully occurring n - the number of times that the experiment is performed x - the number of successes

$$
\left.{ }_{6} C_{1}\left(\frac{1}{6}\right)^{1} \frac{5}{6}\right)^{5}=0.402
$$

Eg 1) A true-false test has 10 questions. Suppose all questions are answered randomly by guessing. Determine the probability of each event to 3 decimal places.
a. Obtaining exactly 5 correct answers.

$$
\begin{gathered}
{ }_{10} C_{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5}=0.246
\end{gathered}
$$

b. Obtaining 7 or 8 correct answers.

$$
\begin{aligned}
& P(7) \rightarrow{ }_{10} C_{7}\left(\frac{1}{2.1}\right)^{7}\left(\frac{1}{2}\right)^{3}=0.117 \\
& P(8) \rightarrow{ }_{10} C_{8}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{2=0.0859} \\
& 0.1609
\end{aligned}
$$

c. Obtaining more than 2 correct answers.

$$
\begin{aligned}
P(0) & ={ }_{10} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{10}=0.000976 \\
P(1)^{+} & ={ }_{10} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{9}=0.00976 \\
P(2)^{+} & ={ }_{10} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{8}=0.0439 \\
& -0.05468=0.9454
\end{aligned}
$$

Eg 2) A regular die is rolled 8 times. Determine the probability of each event to 3 decimal places.
a. obtaining exactly 3 sixes.

$$
{ }_{8} C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{5}=0.104
$$

b. Obtaining at least 3 sixes.

$$
\begin{aligned}
& P(0)={ }_{8} C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{8}=0.233 \\
& P(1)=8 C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{7}=0.372 \\
& P(2)=8 C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{1}{6}\right)^{6}=0.260 \\
& 1-0.865=0.135=0.865
\end{aligned}
$$

The probability that Eric scores a touchdown in a football game is 63\%. Determine the probability that Eric scores a touchdown in exactly 4 of the next 6 games.

$$
{ }_{6} C_{4}^{(0.63)^{4}(0.37)^{2}}
$$

Assignment
 Pg. 457 3-5, 7, 8, 11, 14, 15, 19

